Molecular Mechanism of Enzymatic Chlorite Detoxification: Insights from Structural and Kinetic Studies

نویسندگان

  • Irene Schaffner
  • Georg Mlynek
  • Nicola Flego
  • Dominic Pühringer
  • Julian Libiseller-Egger
  • Leighton Coates
  • Stefan Hofbauer
  • Marzia Bellei
  • Paul G. Furtmüller
  • Gianantonio Battistuzzi
  • Giulietta Smulevich
  • Kristina Djinović-Carugo
  • Christian Obinger
چکیده

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Although structure and steady-state kinetics of Clds have been elucidated, many questions remain (e.g., the mechanism of chlorite cleavage and the pH dependence of the reaction). Here, we present high-resolution X-ray crystal structures of a dimeric Cld at pH 6.5 and 8.5, its fluoride and isothiocyanate complexes and the neutron structure at pH 9.0 together with the pH dependence of the Fe(III)/Fe(II) couple, and the UV-vis and resonance Raman spectral features. We demonstrate that the distal Arg127 cannot act as proton acceptor and is fully ionized even at pH 9.0 ruling out its proposed role in dictating the pH dependence of chlorite degradation. Stopped-flow studies show that (i) Compound I and hypochlorite do not recombine and (ii) Compound II is the immediately formed redox intermediate that dominates during turnover. Homolytic cleavage of chlorite is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymatic detoxification of Don in transgenic plants via expression of Fusarium graminearum Tri101 gene

Fusarium graminearum is causal agent of economically catastrophic disease of cereal Fusarium Head Blight (FHB) around the world. In addition to causing a loss of yield, this fungus causes serious threats to humans and animals due to the contamination of grain with the trichothecene mycotoxin. TRI101 gene, a Fusarium spp. gene, encodes an enzyme that transfers an acetyl group to the C3 hydroxyl ...

متن کامل

Bisubstrate Kinetic Model for Enzymatic Decolorization of Reactive Black 5 by Coprinus cinereus Peroxidase

In this study, decolorization of the diazo dye, Reactive Black 5 (RB5) in a Coprinus cinereus peroxidase-catalyzed reaction has been investigated. A bisubstate kinetic model for the reaction rate based on the Ping-Pong mechanism was assumed for the enzymatic decolorization. Experiment...

متن کامل

Chlorite dismutases – a heme enzyme family for use in bioremediation and generation of molecular oxygen

Chlorite is a serious environmental concern, as rising concentrations of this harmful anthropogenic compound have been detected in groundwater, drinking water, and soil. Chlorite dismutases (Clds) are therefore important molecules in bioremediation as Clds catalyze the degradation of chlorite to chloride and molecular oxygen. Clds are heme b-containing oxidoreductases present in numerous bacter...

متن کامل

Autocatalysis and self-inhibition: coupled kinetic phenomena in the chlorite-tetrathionate reaction.

The initial rate of formation of chlorine dioxide in the chlorite-tetrathionate reaction changes in an unusual fashion. The formal kinetic order of both reactants varies over a very wide range. Moreover, chlorite ion behaves not just as a simple reactant, but also as a self-inhibitor. A five-step scheme, derived from an eight-step mechanism, is proposed in which the autocatalytic formation of H...

متن کامل

Three autocatalysts and self-inhibition in a single reaction: a detailed mechanism of the chlorite-tetrathionate reaction.

The chlorite-tetrathionate reaction has been studied spectrophotometrically in the pH range of 4.65-5.35 at T = 25.0 +/- 0.2 degrees C with an ionic strength of 0.5 M, adjusted with sodium acetate as a buffer component. The reaction is unique in that it demonstrates autocatalysis with respect to the hydrogen and chloride ion products and the key intermediate, HOCl. The thermodynamically most-fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017